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Executive Summary – April 11, 2021 
Subject: GIS Data Quality Reporting Database Framework and Dashboard 
From: Alex Zarley 
 

Overview 

Data quality reporting for the GIS team at the electric utility where I work is currently done on an ad-hoc 

basis. Each data quality project is created, maintained, and tracked separately. Therefore, there is no 

straightforward way for a manager to visualize, understand, and explore all the data quality issues that exist in our 

GIS currently or historically. Furthermore, analysts on my team must write new queries each time our managers 

need to provide progress reports for data quality cleanup to company executives. 

To solve these issues, I created a database-focused data quality reporting framework for the GIS team at 

my company. The set of Python and SQL scripts I wrote automates nearly every step of the workflow for 

cataloging projects and stores a common set of spatial, attribute, and temporal data for each error in a centralized 

table. To visualize data quality errors, I created an ESRI ArcGIS Online Dashboard to allow managers to explore GIS 

data quality issues spatially and temporally.  

Audience 
GIS managers will use the dashboard to explore and track all our data quality cleanup projects from a 

centralized dashboard with an interactive map and several data visualizations. This should reduce the number of 

data quality report queries they need to request from analysts on the team. GIS Analysts on my team will also use 

the framework and database tables. Since errors are tracked with a specific set of spatial, temporal, and attribute 

information, we can also develop queries and views to produce standardized progress reports without having to 

write project-specific reporting queries. Having all identified data quality errors in our GIS in a single table will 

allow our team greater clarity into the overall health of our data and help us determine where to focus our 

cleanup efforts to have the greatest impact. 

Deliverables 
A version of the AGOL Dashboard I created with dummy data for the state of Wisconsin can be found 

here: https://uw-mad.maps.arcgis.com/apps/dashboards/47d451e1f13f4c5fb14587b8fba7c430. I included 

pertinent sections of Python and SQL code in the Appendix. All code for the project is on my company’s servers. 

Data Collection 
Geospatial data was pulled from my company’s enterprise geodatabase or generated from data quality 

analyses I had written. 

 

https://uw-mad.maps.arcgis.com/apps/dashboards/47d451e1f13f4c5fb14587b8fba7c430
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Framework Design and Architecture 

I created my relational database tables in MS SQL Server and the dashboard in ArcGIS Online using 

Dashboards Beta. The ETL process (Fig. 1) uses a combination of manual entry in Microsoft Excel and scheduled 

and manually run Python 2.7, Python 3.8, and Transact SQL scripts and statements. 

I created five new database tables (Fig 2.) to store project and error data and created a SQL stored 

procedure to create the individual issues table for the project when its data is initially loaded from the Excel 

spreadsheet (Fig. 7). I created two tables in our Reference schema (REF) to store information about datasets. 

REF.DATASET includes basic information about the datasets in our GIS. We perform analyses in several replica 

databases, so REF.DATASET_DETAILS stores information about the specific version and location of the datasets 

used in data quality analyses. The other tables are all created in the Data Quality schema (DQ) and will catalog 

data quality project information and errors. DQ.PROJECT includes basic information about each project and 

provides a centralized location for anyone on our team to lookup all past and current data quality projects. It also 

stores the name of each project’s individual issues table, which is used to load errors into the global issue table. 

DQ.TEST_INFO contains information about all data quality checks, including what project each test is associated 

with and what datasets are used. DQ.INDIVIDUAL_ISSUES defines the common set of attributes that will be 

recorded for every project. That table will be auto-created for each project with the columns defined in Figure 2. 

DQ.GLOBAL_ISSUES is the table where all errors from all data quality projects will be stored and is the dataset 

visualized in the AGOL Dashboard. 

The first step in the workflow (Fig. 1) is for a user to create a copy of the Excel template. They then 

populate the three tabs of the Excel workbook with information about their project (Fig. 3), the datasets used in 

the project (Fig 4.), and the errors the project identifies (Fig 5.). After adding information to the Excel workbook, 

an analyst will run a Python script stored in the same directory as their workbook on a network drive. The Python 

script reads the Excel workbook into a Pandas dataframe, validates the data, checks if the information already 

exists in the database tables, inserts it if it does not (Fig. 6), and sends the analyst an email with record IDs for 

their project information in the database tables. It also calls a stored procedure to auto-create the individual 

project issues table using the project name supplied by the analyst (Fig. 7). I use Pandas for all data manipulations 

and analysis in the Python script. I use pyodbc and sqlalchemy for all interaction with the SQL Server database 

from Python. 

Once the project information is catalogued in the database, the analyst can add the record IDs they 

received in the email to their existing Python script (Fig. 8), so they are included when errors are inserted from 

Pandas dataframes into the project issues table in the database. These Python scripts are usually scheduled to run 

weekly using Task Scheduler. The process to identify current errors each week, load them into a staging table in 
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the database, and merge the current errors into the individual project issue table is fully automated (Figs. 9, 10, 

11). A second stored procedure (Fig. 12) is scheduled in the SQL Server database to run each Sunday and merge 

the errors from each project’s individual issue table into the global issue table. 

I manually published the initial hosted feature service of the global issue table to AGOL. I wrote a Python 

3.6 script using arcpy and the ArcGIS API for Python (Fig. 13) to copy the global issue table from SQL Server to a 

file geodatabase and overwrite the feature service on AGOL using the feature class in the file geodatabase. I chose 

this method rather than GEOJSON because the size limit of 100MB for GEOJSON would quickly have been 

surpassed as more errors are loaded into the table. I scheduled this script using Task Scheduler so that it runs 

each Sunday after the completion of the stored procedure in Figure 12. 

Dashboard Description & Summary 

I created the ArcGIS Online Dashboard using Dashboard Beta. After feedback from user-testing in class, 

and several rounds of peer review at work, I arrived at the final design which attempts to answer the questions: 

how long will the cleanup take, where do we to focus our efforts, and how much cleanup have we been 

performing over time?  

The data quality project I chose to visualize is an analysis I created to determine the distance between all 

our electric poles in our GIS and the location of the corresponding poles from a LiDAR dataset of our poles’ 

locations. Our GIS data standards claim that all poles in GIS will be mapped within 20 feet of their actual location, 

so a pole is considered “correct” or “rectified” if it is 20 feet or less from its corresponding LiDAR pole. All poles 

greater than 20 feet from their corresponding LiDAR pole need to be rectified. I used Pandas and Geopandas to 

perform the analysis and calculate distances between the two pole datasets. Due to data sharing restrictions at 

my company, I created dummy pole data for the dashboard and aggregated it to the PLSS Wisconsin Townships 

feature class from the Wisconsin Department of Natural Resources Open Data site to visualize in the dashboard. 

Figure 14 shows the initial view of the dashboard. All widgets within the red box will update as a new 

month is selected in the top right portion of the dashboard (teal box). The two widget groups on the right provide 

historical data summarized by month and do not update when the month filter is changed. 

The Hours to Rectify All Poles widget in the top left (Fig. 14) attempts to answer the question “how long 

will the cleanup take?”. I analyzed how many poles analysts rectified over the last several months and determined 

that an analyst can rectify, on average, 8 poles per hour. This widget visualizes that when this cleanup started at 

the end of November, it would take an estimated 13,000 analyst hours to rectify all poles. As of the end of March, 

that number is down to 11,200 hours. 

The Total Cleanup Progress pie chart in the bottom left (Fig. 14) provides a snapshot of how many poles 

have been rectified and how many are remaining to fix. The Distribution and Transmission tabs of this widget 

stack provide the same information, except filtered by each pole type. 
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Two web maps are embedded in the center of the dashboard (Fig. 14). Each map supports pan, zoom, 

bookmark, and search. Clicking a township will display a popup with information about the poles in that polygon 

(Fig. 21). Estimated Hours to Complete Pole Rectification by Township (Fig. 19) visualizes an estimate of how 

many analyst hours it will take to rectify all poles within a given township range grid. If all poles in a grid have 

been rectified, it will display as lime green. Otherwise, the lighter the color, the longer it will take to rectify all 

poles in that polygon. This map gives managers a quick visual summary of the cleanup and can allow them to see 

any clustering of particularly bad data in the service area. Clicking through each month can also show them where 

progress has been made on pole rectification. The Time to Finish Township Summary pie chart (Fig. 18) shows the 

breakdown of the townships from the map in each bucket for the month in the top right of the dashboard. 

The Pole Cleanup by Township map (Fig. 20) is a bivariate choropleth map that attempts to provide 

greater insight into the status of the poles in each township. The two variables visualized are total pole count and 

percent of poles remaining to fix. I chose to do a bivariate map, rather than a simple choropleth visualizing 

percent of poles remaining to fix, to normalize the percentage by the total pole count in the township. This makes 

it is easier to differentiate between area with a high percent of poles to fix but only a few total poles and areas 

with a similar percent to fix but with more poles. Areas in white and yellow will require less work to fix, while 

areas in red and brown will require more work. 

The list widgets below the maps (Fig. 14) provide information on the townships with the highest 

percentage of poles remaining to be fixed and the townships with the highest percentage of poles that have 

already been fixed. Clicking an item in these widgets will pan and zoom to that township on both maps. These 

widgets answer the question “which areas have the worst data?” and “which areas have the best data?” 

The Mean Distance by Pole Type between Our Poles and Lidar Poles widget in the top right of the 

dashboard (Fig. 14) shows the average distance by pole type between our poles and their LiDAR locations at the 

end of each month. The shaded green area represents 20 feet and closer (my company’s GIS standard), so the 

goal is to get each line in the chart into the shaded green area. The Mean Distance Improvement by Pole Type 

between Our Poles and Lidar Poles widget (Fig. 15) shows the inverse of the previous widget and shows how 

much the mean distance improves each month. 

The Total Poles Remaining by Month widget (Fig. 14) shows how many poles of each type need to be 

rectified at the end of each month, as well as the total poles remaining to rectify. The Poles Corrected by Month 

widget (Fig. 16) shows how many poles of each type analysts rectified each month. The Poles Corrected Over 

Time widget (Fig. 17) shows the total number of poles that have been rectified at the end of each month. 

Feedback from my coworkers/manager was to wait to create the overview dashboard visualizing the 

global issues table until we load several projects into the framework, so the dashboard for this project is more 

specific to the project I loaded into the framework first. I discovered that other Dashboards, and many AGOL 

Items, can be nested inside a “parent” dashboard using the embedded content widget. In the future, this will 
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allow me to create a “landing page” Dashboard that will provide an overview of all projects loaded into the 

framework, and add any other project-specific Dashboards as well. Users will then be able to toggle between all 

the nested dashboards from the same URL by clicking on the tabs, like the stacked widgets in the dashboard I 

created. 

Challenges and Personal Growth 

The biggest challenge, along with the area I learned the most, was executing insert statements, stored 

procedure, and dynamic SQL from a Python environment. I quickly learned it was more complicated than copying 

the SQL I wrote in MS SQL Server Management Studio, pasting it into the Python scripts as strings, and executing 

those strings. In previous work, I found pandas’ .to_sql() method to be sufficient for getting data from a pandas 

dataframe into a database environment. For this project, that method had three major shortcomings: column 

data types changed from dataframe to database table, dates lost timezone information, and it offered no way to 

insert geometries. I learned to connect to the SQL Server database with pyodbc, create sql strings with ‘?’s as 

placeholders for each column, and pass a pandas dataframe as a list of tuples to be inserted using the sql string 

with ‘?’s. By creating the database tables ahead of time and defining the specific data types I wanted, this method 

gave me full control over how the data was loaded from Python to the database. I also learned how to create 

geometries using this method by passing the WKT in the tuple (Fig. 9). Solving this challenge has been beneficial to 

my other work. I now have much greater control over how data is loaded into a database from a Python script and 

can perform more accurate ETL processes with much less Python code than I could four months ago. 

I struggled with datetime data a lot too. Near the end of the project, I noticed all the dates were 

appearing wrong in my AGOL Dashboard. I then learned that all dates published to AGOL are assumed to be in the 

UTC time zone, and all my datetimes were in Pacific Daylight Time. This forced me to review all the code I had 

written and ensure all datetime stamps were transformed into the appropriate time zone. I now have a much 

better understanding of the Python datetime package, I learned how to use the pytz module to change time 

zones, and developed several code blocks I will reuse in other projects for changing time zones and getting 

datetime data into the proper formats when loading it from a pandas dataframe into a database. With SQL Server 

databases in particular, I learned that inserting datetime data as varchar datatype is the best way to maintain time 

zone offsets when inserting from Python. 

I also greatly improved my ability to read API documentation and implement it into my specific situations. 

I had not used pyodbc to connect to databases before, and there was a steep learning curve. I now know how to 

use it to execute DDL and DML SQL, execute stored procedures while supplying parameters, and use dynamic SQL 

strings to convert data to specific formats, particularly geometry and datetime, in the same action as inserting it 

into the database. I also figured out how to optimize my code when inserting hundreds of thousands of rows of 

data by chunking my dataframes and using the fastexecutemany property of the pyodbc cursor object. 
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Summary/Conclusion 
This project met the goal of creating a database framework to catalog data quality projects and their 

errors. It streamlined and centralized the project documentation process by loading data from an Excel workbook 

into a database, and standardizes the data tracked by analysts at my company in all data quality projects going 

forward. The framework is semi-automated and easy for my coworkers to use, and any project loaded into the 

database framework will automatically have its errors pulled into the global issues table. While the AGOL 

Dashboard is not in its final format of visualizing every data quality error, the dashboard I created tells a much 

more compelling story of our LiDAR pole cleanup project than the CSV’s we used to track the errors previously. 

Furthermore, the layout and framework of this dashboard is scalable, and I have identified designs and strategies 

to visualize and quantify all data quality errors and cleanup across our service territory as more projects are 

loaded into this framework. 
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Appendix 
 

 

Figure 1: Data quality framework workflow diagram. Oval is starting point, rectangles are scripts (either scheduled or 
manually run), and rectangles with a diagonal top require manual work. 
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Figure 2: Database Relational Diagram 

 

Figure 3: Project Information tab of Excel Workbook template. Each cell has help text on hover and basic data validation. 

 

Figure 4: Dataset tab of Excel Workbook template. Information about version and location of each dataset used in analysis. 
Each cell has help text on hover and basic data validation. 
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Figure 5: Dataset tab of Excel Workbook template. Information about DQ error checks in analysis. Each cell has help text on 
hover and basic data validation. 

 

 

Figure 6: Python to insert project information from Excel template into database tables. Very similar code used to insert 
dataset and test information from Excel template. 

 

 

Figure 7: Stored procedure to automatically create project issue table when data loaded from Excel workbook. Stored 
procedure is called from same Python script as Figure 6, and supplies the project name the user entered in the workbook to 

construct and execute dynamic SQL string shown above. 
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Figure 8: Python showing how to add the projects/dataset/test record IDs received in email to existing Python script so errors 
loaded into database individual issues table are associated with proper project, dataset, and test records. 

 

Figure 9: Python deleting errors from stage table and inserting current errors in chunks of 5000 to prevent memory errors. 
The publish date column is inserted as VARCHAR to maintain time zone information and the geometry is created from WKT in 

the insert_sql variable. 
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Figure 10: Python confirming all errors from dataframe all_distance were inserted into database and publish date in stage 
table matches date from Python script before executing this project’s stored procedure to merge errors that were just 

inserted into stage table into the existing Individual project Issue table. 

 

Figure 11: SQL stored procedure called from Python script to merge current errors into project issue table. It will update the 
RESOLVED_DATE column if an error has been fixed or update the PUBLISH_DATE and CURRENT_DISTANCE columns if it still 
exists. New errors will be inserted and features with errors that were deleted from GIS will have their record deleted from 

project issue table. 
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Figure 12: SQL stored scheduled in SQL Server database to run each Sunday. This crawls through the issue table for each 
project listed in DQ.PROJECT and merges the project’s errors into global errors table. Merge logic is similar to Figure 11. This 

figure demonstrates the “while loop” to crawl through each distinct value in DQ.PROJECT.ISSUE_TABLE_NAME column. 

 

 

Figure 13: Python script to overwrite existing Global Issue hosted feature service with new data that has been exported to file 
geodatabase. 
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Figure 14: Default view of AGOL Dashboard. Use Months in teal box to filter data in widgets inside red box. 

 

 

Figure 15: Widget showing how much mean pole accuracy 
by pole type improved by month.  

Widget 16: Widget showing how many poles were 
rectified during each month.
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Figure 17: Widget showing running total of poles correct 
at end of each month. 

 
 

Figure 18: Pie chart showing breakdown of townships in 
Hours to Comp map tab. Filtered by month toggles.

 

 

Figure 19: Choropleth web map visualizing estimated number of hours to rectify all poles in township. Filtered by month 
toggles. 
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Figure 20: Bivariate choropleth web map visualizing total pole count vs percent of all poles remaining to be fixed in township. 
Filtered by month toggles. 

 

 

Figure 21: Popup for Web Maps. Displays information for each pole type. 

 


